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LETTER TO THE EDITOR 

Storage of correlated patterns in a perceptron 

B L6pez. M Schroder and M Opper 
InStihlt ffir Theoretische P h W  UnivRsa;it Wiinburg, Am Hubland, D-97074 Wiinbu& 
-Y 

Received 26 May 1995 

Abstract We calculate storage capacity of a percepmn for correlated Gaussian panems. 
We find that the s tmge opacity ac can be less than 2 if similar panms are mapped onto 
different outputs and vice vena. As long as the pattems are in a general position we obtain, 
in contrast to previous works. that ac > 1 in agreement with Cover’s theorem. Numerical 
simulations confirm the results. 

The critical storage capacity of a simple perceptron for randomly chosen inputloutput pairs 
is known to be ac = p / N  = 2, with p the number of stored pattems and N their input 
dimension. This result was first derived by Cover (1965) using a geometrical argument and 
later by Gardner (1988) and Gardner and Demda (1988) by calculating the fractional phase 
space volume of consistent coupligs with the tools of statistical mechanics and the replica 
approach. 

Cover’s theorem states that, as long as the pattems cfi (p = 1, . . . , p )  are in a general 
position (no subset of N or less patterns is linear dependent), the critical storage capacity 
ac is at least 1, independently of the corresponding outputs sfi. For (Y between 1 and 2 the 
fraction of output combinations which are not linearly separable is exponentially small in 
N .  The converse holds for 01 larger than 2. In this case a randomly chosen sequence of 
outputs will not be linearly separable with a probability approaching 1 as N -+ CO. This is 
even true if correlations among the patterns cfi are introduced (Monasson 1992). 

One would argue that, in general, correlations which include the outputs lead to higher 
critical storage capacities as is, for instance, the case for biased pattems (Gardner 1988). 
Recently it has been found (Bork 1994, Schroder et al 1995) that pattems and outputs 
extracted from a bit-sequence seem to lead to smaller storage capacities than a, = 2 for 
a perceptron. The bit-sequence is thought of as an infinite time series (; (i = 1,2,  . . .) in 
which the first pakern results from the first N values ci (i = 1, . . . , N) and its output from 
the ( N  + 1)th value <”N+, (or sign(<N+I) for continuous valued <;). By moving this ( N  + 1)- 
broad window one step forward, the second pattem and its corresponding outpG result, and 
so on. If the <i are drawn at random from adistribution with (51) = 0, (<:) = 1, one finds 
that the critical storage capacity of a perceptron which stores the resulting inputloutput pairs 
(cf i ,sf i )  is a, % 1.82 for b i n e  3;. and a; Fz: 1.88 for Gaussian 5;. This result indicates 
that the embedded correlations between input/output pairs resulting from the bit-sequence 
lead to a reduction of the storage capacity when compared to randomly chosen pairs and 
are harder to implement in a perceptron. 

Taking the former as a motivation, we will investigate in the present letter the effect 
of correlations between inputloutput pairs on the critical storage capacity of a perceptron. 
The main idea is that the storage of similar pattems with different outputs should be more 
difficult to implement ina  perceptron than the case of similar pattems with identical outputs. 
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If we introduce the transformed patterns up = &p', this similarity or dissimilarity can be 
described with a positive or negative overlap ( R  = N - l u ,  . U") respectively between two 
transformed patterns p and U. Without loss of generality we fix all outputs to have the 
value sp = +I ( p  = 1,. . . , p ) .  so that up =e,. Let us now take pairs of pattems with a 
fixed overlap R. With a normalization such that E: ~= N ,  we have 

with ]RI < 1. Apart from these fixed overlaps two arbitrary patterns will not be correlated 
and thus will have an overlap of N-'E,, .& = 0 in the thermodynamic limit N + 00. 

Before evaluating the storage capacity for a general R let us consider some special cases 
of interest. For R = 1 the two pattems out of a pair are identical (for N + co), so that 
the storage of the first pattem automatically implements the second one, concluding that 
a,(R = 1) = 4. For R = 0 no correlations are present and a,(R = 0) = 2 as usual. For 
R = -1 the patterns are not in a general position, since p / 2  of them are painvise linearly 
dependent. Already the fist two pattems cannot be implemented by a perceptron, so that 
a,(R = -1) = 0. However, if. R is very close to -1 the general position is guaranteed and 
thus a,(R = -1 + E )  1, ( E  > 0) according tc'cover's theorem. We will investigate this 
case later in more detail. 

Following Gardner's approach we consider .the fractional phase space volume V of 
couplings J that are consistent with the constraints imposed by the patterns (version space): 

E2p-1 ' = N R for p = 1, . . . , p / 2  (1) 

with 

It is clear that, for negative R, the reduction in the version space by every new pair of 
patterns is more drastic than for R = 0 and so we expect ac to be less than 2. 

We now fix sJ' = +l (p  = 1, . . . , p )  and introduce the conditions (1) via delta functions. 
The average ((In V)) ,  will be performed by means of the replica trick and is defined by 

((f tK"}{=,)))c = CN / n n(D$"-'D@')f((E')e=,, n W - ' E z p - l  . €2, - R )  . (4) 

where CN is the normalization constant resulting from ((l)), = 1, and Dx = 
dx exp(-x2/2)/fi is the Gaussi%=me&ure.- usud in the-calculation the order 
parameter qap appears, which measures the overlap between two replicas. Making the 
replica symmetric ansatz qua = q (Vu c p )  and using ((ln V))e = lim,,on-' In((V"))e 
together with the saddle-point method to evaluate the integrals in the thermodynamic limit, 
one obtains 

PI2  N P I 2  

p=l ;=I p=l 

1 1 
-((ln V)) ,  = Extr / D x  / D z  Inf (4, R ,  ~ , x , z )  + -h( l ' -q )  2 N Y + -- 2 1 - q  
with 

where 
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The critical storage capacity is reached when the version space shrinks to a single point and 
thus q reaches unity. From the extremum condition in (5) we obtain for the critical storage 
capacity a,: 

~ a , ' ( R , ~ ) = l i m  q+ 1 ] . (8) 

In the l i t  q + 1 one has to consider the cases of positive and negative R separately 
yielding 

with a = K f x  , b = K + Rx + m z  and 

K + R X  K ( l  - R) K ( ~ - R ) + X ( ~ - R ' )  
Ji=F z z =  R J i = F  

zo=-= z 1 = -  

For the interesting case K = 0 this expression reduces to a surprisingly simple form: 

Here 6 is the angle between two correlated patterns, and (10) holds for -1 < R < 1. The 
resulting curve is plotted in figure 1. The simulations have been carried out in the following 
two ways. First, one can calculate the average probability that a given set of patterns with 
correlations as described above is linearly separable for different values of a. The condition 
for the critical capacity is that this probability equals 112. The second method is to assume 
that the medianlearning t h e  (for the perceptron learning rule) scales as Co.' ,- (ac - a) 
for a -+ a- This can be proven for uncorrelated patterns (Opper 1988) and has~been used 
by Priel ef al  (1994) to determine the critical capacity by extrapolating the curve to + CO. 

The inset in figure 1 shows clearly that the mentioned scaling law is obeyed in our case 
too. 

AS we expected, for negative R the storage capacity lies below 2, approaching the 
value of ac = 4/3.for R + -1. This result can be understood as follows. Every pair 
p (= 1, . . . , p/2 of correlated patterns defines a vector L,, = Ez,,-, - f2,. For R + -1 
the coupling vector J falls for every p into a hyperhalfplane orthogonal to L,. This leads 
to the constraints: . .  . 

for J ,  where T, is a vector orthogonal to L,. The second constraint defines a new 
perceptron problem with p/2 uncorrelated pattems Tp for a coupling vector J with an 
effective number of dimensions of (N - p/2) due to the first constraint. According to 
Cover's theorem (p/2)/(N - p/2) = 2 and thus ac = p /N = 413. 
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Figure 1. The critical storage capacity % as a function of the overlap R between hvo correlated 
panems for Y = 0. The dots with lhek componding mor bars an results from numerical 
simulations for systems with N = 100. het :  The median l h n g  time to the power of -112 
as a function of (I for R = -0.95. The values an averaged over 1000 samples, the line is a 
least square fit for the dam and the intenection becween the extrapolation and the x a x i s  gives 
the estimated value of %. 

Up to now we have assumed that the overlap R is the same for all pairs. The case 
where two patterns have an overlap R with a probability'P(R) can also be handled. The 
averages over different values of R factorize and the storage capacity is simply given by 

Or;' (K = 0) = / dR P(R) 

The last equality states that the reciprocal values of the capacity for a fixed value of the 
overlap weighted with their corresponding probability sum up to the reciprocal of the total 
capacity. If the distribution is symmetric (P(R) = P(-R)) the storage capacity is cyc = 2. 
This is immediately clear if one thinks of a correlation with a primary distribution Pl(R) 
and, in addition, chooses outputs sg at random f l  instead of taking them all equal to +l. 
The new distribution of the correlations is then given by P ( R )  = Pl(R)/2 + Pl(-R)/2, 
which is symmetric and will lead in (12) to a, = 2 as it should, since we have taken the 
outputs to be random. 

Let us now tum to the case where more than two patterns are correlated among each 
other. In the case of three patterns with equal pairwiie overlap R we can conclude that 
for R = 1 the storage capacity is ciC = 6 for K = 0. If R tends to -112 which is the 
minimal accessible value in this case, a geometrical argument similar to (11) leads us to 
(p/3)/(N - 2p/3) = 2 and thus wc = p/N = 6/5. The calculation of mC(R) for other 
values of R should be more complicated than in the the former case, since to disentangle 
the additional correlations one has to introduce more Gaussian fields. In general, if the 
patterns are correlated in tupels of m it follows in the same way: 

cYc(R = 1, K = 0) = %l 

a,(R = O,K = O )  = 2 
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Form + 00, a, tends to 1 as R approaches the minimal possible value - l / (m - 1). 
As long as m is of the order 1 compared to the number of pattems p ,  we will have 

to calculate ac(R)  as for m~ = 2, which for larger m becomes very complicated. If m, 
however, is of the order pY with 0 < y 6 1 we are able to proceed in a much simpler way. 
For this purpose we first introduce, as in Fontanari and Meir (1989). the correlation matrix 
C for the patterns: 

CF" = (&?g)F vp* v = 1,. . . ~ p .  (14) 

The ti. = (6: , . . . , tr) are then distributed as 

The class of correlations we have considered is described by 

f R  f o r p = m a - z , v = m u - 6 , ~ = 1 ,  ..., p l m  
with z, E = 0,. . . , (m - 1) 
for p = v 

(z # E )  
(16) 

0 ' ' else. . .  

C," = 

The average over the fractional phase space of couplings is now performed with (15) and 
results for m + 00 and N + 00 in 
1 
N P 
-((In V ) ) ,  = Extr 

2 1 - q  
1 
2 

+-In(1-q)+-- 

with 

and c = Rm in the limit m +'CO, so -1 < c < 00 since -(m - I)-' -= R 6 1. 
We have made the replica symmetric ansatz for qap and the additional order parameter 
r, = m-' E=, xf, where xf are the conjugate variables to the local fields A:, and its . 
conjugate i,. 

If we solve (17) for the extremum we first can write r in terms of i and find in @e 
limit q + 1: - r _ _ =  

C - 
(20) 

From the first equation we can obtain ? numerically and plug it into the second to find 
a,. Figure 2 shows the storage capacity as a function-of c for several values of K .  For 
K = 0, a; approaches 1 as c + -1. This behaviour is in agreement with (13) for large m. 
Fontanari and Meir (1989) considered the case m = p, so all patterns are painvise correlated. 
However, due to an error in one of the saddle-point equations U ~ ( K  = 0) becomes less than 
1 for values below c it: -0.7 and reaches ac = 0 for c --f -1. 

r 
a ; y , - ' ( ~ , ~ ) = ~ ( - ~ - ? ) + ~ - .  

C 
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Figure 2. The critical storage capacity U, in the case where the pattems are correlated in tupels 
of m with a painvise overlap R ,  35 a function of the parameter c = Rm form -+ m and for 
various values of K = 0.0.0.2,1.0, 2.0 (from top to bottom). 

For hierarchically correlated biased'pattems the storage capacity has been calculated by 
Engel (1990). Above certain values of the bias the critical capacity is less than two and for 
certain ranges even less than one. It is not clear to us at which point the general position 
is violated in this case. 

In summary, we have analysed the behaviour of the storage capacity of a perceptron for 
correlated patterns. We find that the storage capacity is lowered with respect to uncorrelated 
patterns when different pattems (negative overlap) are mapped onto the same output, but 
does not fall below one, in agreement with Cover's theorem. As a consequence we suggest 
that the correlation matrix of the pattems should be analysed for problems which lead to a 
reduced storage capacity as, for example, the bit sequence. 

Future work should include the calculation of the stability of the replica symmetric 
solution and the storage capacity for a binary perceptron. One could also investigate the 
consequences for other architectures such as the commitee or parity machine, although we 
think that the results should be similar for these cases. 

After completion of this work we have learned that a similar problem has been studied 
by Winkel (1995) using a aifferent approach. 

We would like to thank I Kanter for useful discussions. This work has been supported by 
the Deutsche Forschungsgemeinschaft. 
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